Skip to main content Skip to main navigation menu Skip to site footer

Water-soluble Fullerene (C60) as The Reactive Oxygen Species Scavenger in Preventing Further Degeneration in Patients with Osteoarhtritis

Abstract

Background: Osteoarthritis (OA) is the most common degenerative disease that may contribute in the joints among population. Reactive oxygen species (ROS) is one of the main indicators that may affect the progression of OA itself. The current treatments are entangling physical measures, drug therapy, and surgery. The sphere carbon component call C60 Fullerene thought can be the breakthrough therapeutic management in treating OA patients.

Method: Literature review is done by searching journals with “C60 fullereneâ€, “osteoarthritisâ€, and “reactive oxygen species†on the search engines. From 49 journals that were reviewed, 47 were found suitable as reference for this paper.

Outcome: C60 fullerene is cage structured molecule consists of spherical carbon molecules. This derivate may work as the free radical scavenger that has high acting reactivity with ROS. C60 fullerene works by using several mechanisms that protects from main proinflammatory cytokines resulting from ROS expression, such as TNF-α and IL-1β. This modality works in several places, in the synoviocytes and also chondrocytes. Through its advantageous, there some setbacks including the difficult process regarding its nano molecule procedure and the questions marks regarding its safety and toxicity.

Conclusion: C60 fullerene may contribute in treating patients with OA through several mechanism of action. Further researches are required to identify the efficacy and effectivity of the C60 fullerene in treating OA patients and also its safety and toxicity.

 

Latar Belakang: Osteoarthritis (OA) merupakan suatu kondisi degenerative yang sering terjadi pada sendi manusia di seluruh dunia. Stress oksidatif (ROS) merupakan salah satu dari indikasi utama dalam progresivitas dan perkembangan dari OA itu sendiri. Pengobatan terkini dari OA meliputi rehabilitasi fisik, terapi obat, dan operasi. Terdapat sebuah komponen rantai hidrokarbon yang disebut C60 fullerene dinyatakan dapat menjadi suatu terobosan dalam pengobatan pada pasien dengan OA.

Metode: Artikel review ini diselesaikan dengan mencari kata kunci “C60 fullereneâ€, “osteoarthritisâ€, dan “reactive oxygen species†berbagai jurnal di beberapa mesin pencarian. Dari 49 jurnal yang ditemukan, didapatkan 47 jurnal tersebut cocok untuk dijadikan bahan dalam pembuatan artikel ini.

Hasil: Bahan hidrokarbon C60 fullerene ini merupakan rantai yang berbentuk bulat. Derivat ini dapat digunakan sebagai scavenger untuk stres oksidatif dengan reaktivitasnya yang tinggi terhadap stres oksidatif. C60 dapat bekerja melalui beberapa macam jalur yang dapat melindungi tubuh dari beberapa sitokin proinflamasi yang dihasilkan dari ekspresi stres oksidatif, seperti TNF-α dan IL-1β. Modalitas ini dapat bekerja pada beberapa tempat, seperti di synovial dan juga kondrosit. Terlepas dari kelebihannya, ada beberapa kekurangan dan limitasi yang perlu diperhatikan dari penggunaan nano molekul ini berhubungan dengan tingkat keamanan dan toksisitasnya.

Kesimpulan: C60 fullerene bisa berkontribusi dalam mengatasi pasien dengan OA melalui beberapa mekanisme kerja. Namun, penelitian lebih lanjut perlu dikembangkan untuk mengetahui secara pasti dari efektivitas C60 fullerene dalam mengatasi OA dan juga terkait keamanan dan toksisitasnya.

References

  1. References
  2. Chen D, Shen J, Zhao W, Wang T, Han L, Hamilton J et al. Osteoarthritis: toward a comprehensive understanding of pathological mechanism. Bone Research. 2017;5(1).
  3. Heidari B. Knee osteoarthritis prevalence, risk factors, pathogenesis and features: Part I. Caspian J Intern Med. 2011;2(2):205–212.
  4. Mora J, Przkora R, Cruz-Almeida Y. Knee osteoarthritis: pathophysiology and current treatment modalities. Journal of Pain Research. 2018;Volume 11:2189-2196.
  5. Loeser R, Goldring S, Scanzello C, Goldring M. Osteoarthritis: A disease of the joint as an organ. Arthritis & Rheumatism. 2012;64(6):1697-1707.
  6. Dulay G, Cooper C, Dennison E. Knee pain, knee injury, knee osteoarthritis & work. Best Practice & Research Clinical Rheumatology. 2015;29(3):454-461.
  7. Allen K, Golightly Y. State of the evidence. Current Opinion in Rheumatology. 2015;27(3):276-283.
  8. Nguyen T. Osteoarthritis in southeast Asia. International Journal of Clinical Rheumatology. 2014;9(5):405-408.
  9. Mora J, Przkora R, Cruz-Almeida Y. Knee osteoarthritis: pathophysiology and current treatment modalities. Journal of Pain Research. 2018;Volume 11:2189-2196.
  10. Onishi K, Utturkar A, Chang E, Panush R, Hata J, Perret-Karimi D. Osteoarthritis: A Critical Review. Critical Reviews in Physical and Rehabilitation Medicine. 2012;24(3-4):251-264.
  11. Courties A, Gualillo O, Berenbaum F, Sellam J. Metabolic stress-induced joint inflammation and osteoarthritis. Osteoarthritis and Cartilage. 2015;23(11):1955-1965.
  12. Yui N, Yudoh K, Fujiya H, Musha H. Mechanical and oxidative stress in osteoarthritis. The Journal of Physical Fitness and Sports Medicine. 2016;5(1):81-86.
  13. Ziskoven C, JÄger M, Kircher J, Patzer T, Bloch W, Brixius K et al. Physiology and pathophysiology of nitrosative and oxidative stress in osteoarthritic joint destruction. Canadian Journal of Physiology and Pharmacology. 2011;89(7):455-466.
  14. Yui N, Yoshioka H, Fujiya H, Musha H, Karasawa R, Yudoh K. Water-soluble C60-(OH)24 fullerene hydroxide as a therapeutic agent against the degeneration of articular cartilage in osteoarthritis. Osteoarthritis and Cartilage. 2015;23:A164-A165.
  15. Jordan K, Jöud A, Bergknut C, Croft P, Edwards J, Peat G et al. International comparisons of the consultation prevalence of musculoskeletal conditions using population-based healthcare data from England and Sweden. Annals of the Rheumatic Diseases. 2013;73(1):212-218.
  16. Man GS, Mologhianu G. Osteoarthritis pathogenesis - a complex process that involves the entire joint. Journal of Medicine and Life. 2014;7(1):37–41.
  17. Maruotti N, Corrado A, Cantatore F. Osteoblast role in osteoarthritis pathogenesis. Journal of Cellular Physiology. 2017;232(11):2957-2963.
  18. Corrado A, Neve A, Macchiarola A, Gaudio A, Marucci A, Cantatore F. RANKL/OPG Ratio and DKK-1 Expression in Primary Osteoblastic Cultures from Osteoarthritic and Osteoporotic Subjects. The Journal of Rheumatology. 2013;40(5):684-694.
  19. Findlay D, Atkins G. Osteoblast-Chondrocyte Interactions in Osteoarthritis. Current Osteoporosis Reports. 2014;12(1):127-134.
  20. Scanzello C, Goldring S. The role of synovitis in osteoarthritis pathogenesis. Bone. 2012;51(2):249-257.
  21. Mathiessen A, Conaghan P. Synovitis in osteoarthritis: current understanding with therapeutic implications. Arthritis Research & Therapy. 2017;19(1).
  22. Howell R. Degenerative meniscus: Pathogenesis, diagnosis, and treatment options. World Journal of Orthopedics. 2014;5(5):597.
  23. Lepetsos P, Papavassiliou A. ROS/oxidative stress signaling in osteoarthritis. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2016;1862(4):576-591.
  24. Lepetsos P, Papavassiliou K, Papavassiliou A. Redox and NF-κB signaling in osteoarthritis. Free Radical Biology and Medicine. 2019;132:90-100.
  25. Paździor M, Kiełczykowska M, Kurzepa J, Luchowska-Kocot D, Kocot J, Musik I. The Oxidative Stress in Knee Osteoarthritis Patients. An Attempt of Evaluation of Possible Compensatory Effects Occurring in the Disease Development. Medicina. 2019;55(5):150.
  26. Nathan C, Cunningham-Bussel A. Beyond oxidative stress: an immunologist's guide to reactive oxygen species. Nature Reviews Immunology. 2013;13(5):349-361.
  27. Andreyev A, Kushnareva Y, Murphy A, Starkov A. Mitochondrial ROS metabolism: 10 Years later. Biochemistry (Moscow). 2015;80(5):517-531.
  28. Zhang H, Du Y, Zhang X, Lu J, Holmgren A. Glutaredoxin 2 Reduces Both Thioredoxin 2 and Thioredoxin 1 and Protects Cells from Apoptosis Induced by Auranofin and 4-Hydroxynonenal. Antioxidants & Redox Signaling. 2014;21(5):669-681.
  29. Wang G, Wang J, Luo X, Ansari G, Khan M. Nitrosative Stress and Nitrated Proteins in Trichloroethene-Mediated Autoimmunity. PLoS ONE. 2014;9(6):e98660.
  30. Franz A, Joseph L, Mayer C, Harmsen J, Schrumpf H, Fröbel J et al. The role of oxidative and nitrosative stress in the pathology of osteoarthritis: Novel candidate biomarkers for quantification of degenerative changes in the knee joint. Orthopedic Reviews. 2018;10(2).
  31. Ziskoven C, Jäger M, Zilkens C, Bloch W, Brixius K, Krauspe R. Oxidative stress in secondary osteoarthritis: from cartilage destruction to clinical presentation?. Orthopedic Reviews. 2010;2(2):23.
  32. Nasi S, Ea H, So A, Busso N. Revisiting the Role of Interleukin-1 Pathway in Osteoarthritis: Interleukin-1α and -1β, and NLRP3 Inflammasome Are Not Involved in the Pathological Features of the Murine Menisectomy Model of Osteoarthritis. Frontiers in Pharmacology. 2017;8.
  33. van Dalen S, Blom A, Slöetjes A, Helsen M, Roth J, Vogl T et al. Interleukin-1 is not involved in synovial inflammation and cartilage destruction in collagenase-induced osteoarthritis. Osteoarthritis and Cartilage. 2017;25(3):385-396.
  34. van Dalen S, Blom A, Joosten L, Sloetjes A, Helsen M, van den Berg W et al. Interleukin-1 does not aggravate joint inflammation and cartilage destruction in experimental osteoarthritis. Osteoarthritis and Cartilage. 2016;24:S326.
  35. SUTIPORNPALANGKUL W, MORALES N, CHAROENCHOLVANICH K, HARNROONGROJ T. Lipid peroxidation, glutathione, vitamin E, and antioxidant enzymes in synovial fluid from patients with osteoarthritis. International Journal of Rheumatic Diseases. 2009;12(4):324-328.
  36. Sharma P, Shukla J, Sharma S, Garg N, Gupta P. Correlation of severity of primary knee osteoarthritis with the lipid peroxidation marker in synovial fluid. Osteoarthritis and Cartilage. 2018;26:S113.
  37. Ziskoven C, Jäger M, Zilkens C, Bloch W, Brixius K, Krauspe R. Oxidative stress in secondary osteoarthritis: from cartilage destruction to clinical presentation?. Orthopedic Reviews. 2010;2(2):23.
  38. Chandra M, Panchatcharam M, Miriyala S. Biomarkers in ROS and Role of Isoprostanes in Oxidative Stress. Free Radicals and Diseases. 2016;.
  39. Krupkova O, Smolders L, Wuertz-Kozak K, Cook J, Pozzi A. The Pathobiology of the Meniscus: A Comparison Between the Human and Dog. Frontiers in Veterinary Science. 2018;5.
  40. Yudoh K, Karasawa R, Masuko K, Kato T. Water-soluble fullerene (C60) inhibits the development of arthritis in the rat model of arthritis. Int J Nanomedicine. 2009;4:217–225.
  41. Yudoh K, Yoshioka H, Yui N, Fujiya H, Musha H, Beppu M et al. Water-Soluble C60-(OH)24 Fullerene Hydroxide Protects against the Catabolic Stress-Induce Downregulation of Chondrocyte Activity in Osteoarthritis. J Nanotech Smart Mater 2014;1: 1-7.
  42. Yudoh K, Shishido K, Murayama H, Yano M, Matsubayashi K, Takada H et al. Water-soluble C60 fullerene prevents degeneration of articular cartilage in osteoarthritis via down-regulation of chondrocyte catabolic activity and inhibition of cartilage degeneration during disease development. Arthritis & Rheumatism. 2007;56(10):3307-3318.
  43. Liu Q, Cui Q, Li X, Jin L. The applications of buckminsterfullerene C60and derivatives in orthopaedic research. Connective Tissue Research. 2014;55(2):71-79.
  44. Dellinger A, Zhou Z, Connor J, Madhankumar A, Pamujula S, Sayes C et al. Application of fullerenes in nanomedicine: an update. Nanomedicine. 2013;8(7):1191-1208.
  45. Aoshima H, Yamana S, Nakamura S, Mashino T. Biological safety of water-soluble fullerenes evaluated using tests for genotoxicity, phototoxicity, and pro-oxidant activity. The Journal of Toxicological Sciences. 2010;35(3):401-409.
  46. Andrievsky G, Klochkov V, Derevyanchenko L. Is the C60 Fullerene Molecule Toxic?!. Fullerenes, Nanotubes and Carbon Nanostructures. 2005;13(4):363-376.
  47. Zhu S, Oberdörster E, Haasch M. Toxicity of an engineered nanoparticle (fullerene, C60) in two aquatic species, Daphnia and fathead minnow. Marine Environmental Research. 2006;62:S5-S9.
  48. Sayes C, Marchione A, Reed K, Warheit D. Comparative Pulmonary Toxicity Assessments of C60Water Suspensions in Rats: Few Differences in Fullerene Toxicity in Vivo in Contrast to in Vitro Profiles. Nano Letters. 2007;7(8):2399-2406.

How to Cite

Nolan, J., Karna, M. B., Asmara, A. G. Y., & Meregawa, P. F. (2020). Water-soluble Fullerene (C60) as The Reactive Oxygen Species Scavenger in Preventing Further Degeneration in Patients with Osteoarhtritis. Medicina, 51(2). https://doi.org/10.15562/medicina.v51i2.935

HTML
71

Total
35

Share

Search Panel